Wednesday, May 17, 2023

Chips

 


Plastic was the last BIG thing, but now it is chips. Everything from a hair dryer or refrigerator or automobile or a watch or a hammer has a computer in it; and they all need these teeny tiny microprocessors to work. Like days of old with assembly lines of mechanics assembling model-t’s there are warehouse factories full of workers straining their eyes using tweezers and lasers making what was the transistor radio to what now rules your day.

An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of miniaturized transistors and other electronic components are integrated together on the chip. This results in circuits that are orders of magnitude smaller, faster, and less expensive than those constructed of discrete components, allowing a large transistor count. The IC's mass production capability, reliability, and building-block approach to integrated circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones and other home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs such as modern computer processors and microcontrollers.

Very-large-scale integration was made practical by technological advancements in semiconductor device fabrication. Since their origins in the 1960s, the size, speed, and capacity of chips have progressed enormously, driven by technical advances that fit more and more transistors on chips of the same size – a modern chip may have many billions of transistors in an area the size of a human fingernail. These advances, roughly following Moore's law, make the computer chips of today possess millions of times the capacity and thousands of times the speed of the computer chips of the early 1970s.

ICs have three main advantages over discrete circuits: size, cost and performance. The size and cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, packaged ICs use much less material than discrete circuits. Performance is high because the IC's components switch quickly and consume comparatively little power because of their small size and proximity. The main disadvantage of ICs is the high initial cost of designing them and the enormous capital cost of factory construction. This high initial cost means ICs are only commercially viable when high production volumes are anticipated.

Silicon is the material of choice in the chip industry. Unlike the metals normally used to conduct electrical currents, silicon is a ‘semiconductor’, meaning that its conductive properties can be increased by mixing it with other materials such as phosphorus or boron. This makes it possible to turn an electrical current on or off.

The good news is that it’s everywhere! Silicon is made from sand, and it is the second most abundant element on earth after oxygen. Silicon wafers are made using a type of sand called silica sand, which is made of silicon dioxide. The sand is melted and cast in the form of a large cylinder called an ‘ingot’. This ingot is then sliced into thin wafers.

Electronic waste recycling, electronics recycling or e-waste recycling is the disassembly and separation of components and raw materials of waste electronics; when referring to specific types of e-waste, the terms like computer recycling or mobile phone recycling may be used. Like other waste streams, re-use, donation and repair are common sustainable ways to dispose of IT waste.

Since its inception in the early 1990s, more and more devices are recycled worldwide due to increased awareness and investment. Electronic recycling occurs primarily in order to recover valuable rare earth metals and precious metals, which are in short supply, as well as plastics and metals. These are resold or used in new devices after purification, in effect creating a circular economy. Such processes involve specialized facilities and premises, but within the home or ordinary workplace, sound components of damaged or obsolete computers can often be reused, reducing replacement costs.

Recycling is considered environmentally friendly because it prevents hazardous waste, including heavy metals and carcinogens, from entering the atmosphere, landfill or waterways. While electronics consist a small fraction of total waste generated, they are far more dangerous. There is stringent legislation designed to enforce and encourage the sustainable disposal of appliances, the most notable being the Waste Electrical and Electronic Equipment Directive of the European Union and the United States National Computer Recycling Act. In 2009, 38% of computers and a quarter of total electronic waste was recycled in the United States, 5% and 3% up from 3 years prior respectively.

Someday soon there will be a process to embed a ‘chip’ in our head so you won’t need a cell phone or credit card or a passport for scanners will automatically recognize you and all that information about you. Just walk through the check-out line and your bank account will be billed. Buy a car; no problem for your credit will be verified in seconds and you will be handed the keys. You won’t have to speak for your thoughts will be telepathically sent. The human race will become androids.

The grave robbers will be digging away the chips to reuse on their latest electronic convenience device.

Plug in.


No comments: