Friday, October 4, 2024

Don’t tell me what to do…

 


I jump from one news media to another trying to find facts rather than social media opinions, but now much of what used to be called ‘advertising’ and separated from journalism, has now blended in to keep the reader’s interest. Now instead of ‘Breaking News’ or ‘Latest Update Story’ there is ‘Martha Stewart uses…’ or ‘10 of the best (name your product or service here)’ or ‘The best deals of (name your product or service here) on Amazon, Walmart, Target, or Miller & Rhoades’ or ‘Mother’s love these (name your product or service here)’, etc. Back in the day of the newspaper, there were ‘advertorials’ that seemed like journalistic sections by reputable writers presenting information on how to replace your furnace or keep your yard all tidy or what is the latest pharmaceutical miracle drug. The articles following the accepted AP stylebook seemed like another section like ‘sports or finance’ under the umbrella of the newspaper’s reputation of ethical reporting, but for the discerning reader could find that it was merely an advertisement ‘sponsored’ or ‘promoted’ by the (name your manufacture or service provider here).

TikTok and other social media is overwhelmed with influencers trying to persuade you to part from your wallet greenery because some stranger says this (name your product or service here) can provide you with what you didn’t know you wanted but must have.

Family was the first to tell you what to do. They informed good from evil with religion and self-regulation such as experience of touching a hot stove to switches. Organized education demanded you learn certain things that could be repeated to get a piece of paper that stated you were ready to join a certain status. With a diploma in hand, employment for monetary funds proved another challenge to follow instructions to perform your task or be fired.

Today, we are bombarded by request to follow a trend or contemplate what some stranger tells us will fulfill our self-worth. If we decide not to adhere to these instructions, we may be banished from cultural norms. Follow this fashion style, listen to this popular music, read these books, watch these movies, indulge in these foods and travel to these ancient ruins to converse with the general public. Conform to the normal. Do what you are told or be ostracized by current culture.

Is it the politics or the religion?

Wednesday, October 2, 2024

Energy

 



I am accustomed to flipping a switch and a light bulb glow. I turn a knob on a big metal box and fire comes out. I push a button on a piece of plastic and the door unlocks or the radio turns on or the car starts. I don’t know much about that last part, but I hear we have become so lazy that we have to ask Siri where we left our keys.

All these conveniences take energy. The car won’t roll with petrol. The phone won’t ring with a dead battery. When you can’t recharge your social media appliances, you are alone in the darkness.

So, they say, as they do, that all this use of ‘fossil fuels’ is ruining our little blue space ship and possibly promoting our extinction. Everyone is shuffling to find a way to undo the bad effects on our atmosphere while keeping all our conveniences comforting our lazy lifestyle.

I’m old enough to remember when striking oil was a big deal. Texas was a center for giant Cadillac cars with Stetson, cigar smoking white guys burning dollar bills because they were so rich. Like the previous gold rush, everyone started to ‘drill baby, drill’. Places where before were sand and nomads wandering around on camels became a glut of oil with all of its wealth. Now the precious commodity is shipped around the world through ships and pipelines and trucks to fuel our increasing want for more. When the oil doesn’t flow, the economy stops.

There must have been a lot of dinosaurs to produce all this liquid gold that flows through the veins of our lives from their dead bodies.

A fossil fuel is a carbon compound- or hydrocarbon-containing material such as coal, oil, and natural gas, formed naturally in the Earth's crust from the remains of prehistoric organisms (animals, plants and planktons), a process that occurs within geological formations. Reservoirs of such compound mixtures can be extracted and burned as a fuel for human consumption to provide heat for direct use (such as for cooking or heating), to power heat engines (such as steam or internal combustion engines) that can propel vehicles, or to generate electricity via steam turbine generators. Some fossil fuels are further refined into derivatives such as kerosene, gasoline and diesel.

The origin of fossil fuels is the anaerobic decomposition of buried dead organisms containing organic molecules created by photosynthetic carbon fixation. The conversion from these materials to high-carbon fossil fuels typically requires a geological process of millions of years. Due to the length of time it takes nature to form them, fossil fuels are considered non-renewable resources.

In 2022, over 80% of primary energy consumption in the world and over 60% of its electricity was from fossil fuels. The large-scale burning of fossil fuels causes serious environmental damage. Over 70% of the greenhouse gas emissions due to human activity in 2022 was CO2 from burning them. Natural processes on Earth, mostly absorption by the ocean, can remove only a small part of this CO2. Therefore, there is a net increase of many billion tonnes of atmospheric carbon dioxide per year. Although methane leaks are significant, the burning of fossil fuels is the main source of greenhouse gas emissions causing global warming and ocean acidification. Additionally, most air pollution deaths are due to fossil fuel particulates and noxious gases. It is estimated that this costs over 3% of the global gross domestic product and that fossil fuel phase-out will save millions of lives each year.

Recognition of the climate crisis, pollution and other negative impacts caused by fossil fuels has led to a widespread policy transition and activist movement focused on ending their use in favor of sustainable energy. Because the fossil-fuel industry is so heavily integrated in the global economy and heavily subsidized, this transition is expected to have significant economic impacts. Many stakeholders argue that this change needs to be a just transition and create policy that addresses the societal burdens created by the stranded assets of the fossil fuel industry.

International policy, in the form of United Nations sustainable development goals for affordable and clean energy and climate action, as well as the Paris Climate Agreement, is designed to facilitate this transition at a global level. In 2021, the International Energy Agency concluded that no new fossil fuel extraction projects could be opened if the global economy and society wants to avoid the worst impacts of climate change and meet international goals for climate change mitigation.

      Crude oil, or petroleum, and its refined components, collectively termed petrochemicals, are crucial resources in the modern economy. Crude oil originates from ancient fossilized organic materials, such as zooplankton and algae, which geochemical processes convert into oil. The name "mineral oil" is a misnomer, in that minerals are not the source of the oil—ancient plants and animals are. Mineral oil is organic. However, it is classified as "mineral oil" instead of as "organic oil" because its organic origin is remote (and was unknown at the time of its discovery), and because it is obtained in the vicinity of rocks, underground traps, and sands. Mineral oil also refers to several specific distillates of crude oil.

      Some oils burn in liquid or aerosol form, generating light, and heat which can be used directly or converted into other forms of energy such as electricity or mechanical work. In order to obtain many fuel oils, crude oil is pumped from the ground and is shipped via oil tanker or a pipeline to an oil refinery. There, it is converted from crude oil to diesel fuel (Petro diesel), ethane (and other short-chain alkanes), fuel oils (heaviest of commercial fuels, used in ships/furnaces), gasoline (petrol), jet fuel, kerosene, benzene (historically), and liquefied petroleum gas. A 42-US-gallon (35 imp gal; 160 L) barrel of crude oil produces approximately 10 US gallons (8.3 imp gal; 38 L) of diesel, 4 US gallons (3.3 imp gal; 15 L) of jet fuel, 19 US gallons (16 imp gal; 72 L) of gasoline, 7 US gallons (5.8 imp gal; 26 L) of other products, 3 US gallons (2.5 imp gal; 11 L) split between heavy fuel oil and liquified petroleum gases, and 2 US gallons (1.7 imp gal; 7.6 L) of heating oil. The total production of a barrel of crude into various products results in an increase to 45 US gallons (37 imp gal; 170 L).

     Coal is a combustible black or brownish-black sedimentary rock, formed as rock strata called coal seams. Coal is mostly carbon with variable amounts of other elements, chiefly hydrogen, sulfur, oxygen, and nitrogen. Coal is a type of fossil fuel, formed when dead plant matter decays into peat which is converted into coal by the heat and pressure of deep burial over millions of years. Vast deposits of coal originate in former wetlands called coal forests that covered much of the Earth's tropical land areas during the late Carboniferous (Pennsylvanian) and Permian times.

Coal is used primarily as a fuel. While coal has been known and used for thousands of years, its usage was limited until the Industrial Revolution. With the invention of the steam engine, coal consumption increased. In 2020, coal supplied about a quarter of the world's primary energy and over a third of its electricity. Some iron and steel-making and other industrial processes burn coal.

The extraction and burning of coal damages the environment, causing premature death and illness, and it is the largest anthropogenic source of carbon dioxide contributing to climate change. Fourteen billion tonnes of carbon dioxide were emitted by burning coal in 2020, which is 40% of total fossil fuel emissions and over 25% of total global greenhouse gas emissions. As part of worldwide energy transition, many countries have reduced or eliminated their use of coal power. The United Nations Secretary General asked governments to stop building new coal plants by 2020.

Global coal use was 8.3 billion tonnes in 2022, and is set to remain at record levels in 2023. To meet the Paris Agreement target of keeping global warming below 2 °C (3.6 °F) coal use needs to halve from 2020 to 2030, and "phasing down" coal was agreed upon in the Glasgow Climate Pact.

Natural gas (also called fossil gas, methane gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane (95%) in addition to various smaller amounts of other higher alkanes. Traces of carbon dioxide, nitrogen, hydrogen sulfide, and helium are also usually present. Methane is colorless and odorless, and the second largest greenhouse gas contributor to global climate change after carbon dioxide. Because natural gas is odorless, odorizes such as mercaptan (which smells like sulfur or rotten eggs) are commonly added to it for safety so that leaks can be readily detected.

Natural gas is a fossil fuel that is formed when layers of organic matter (primarily marine microorganisms) decompose under anaerobic conditions and are subjected to intense heat and pressure underground over millions of years. The energy that the decayed organisms originally obtained from the sun via photosynthesis is stored as chemical energy within the molecules of methane and other hydrocarbons.

Natural gas can be burned for heating, cooking, and electricity generation. It is also used as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals and less commonly used as a fuel for vehicles.

The extraction and consumption of natural gas is a major and growing contributor to climate change. Both the gas itself (specifically methane) and carbon dioxide, which is released when natural gas is burned, are greenhouse gases. When burned for heat or electricity, natural gas emits fewer toxic air pollutants, less carbon dioxide, and almost no particulate matter compared to other fossil and biomass fuels. However, gas venting and unintended fugitive emissions throughout the supply chain can result in natural gas having a similar carbon footprint to other fossil fuels overall.

Natural gas can be found in underground geological formations, often alongside other fossil fuels like coal and oil (petroleum). Most natural gas has been created through either biogenic or thermogenic processes. Thermogenic gas takes a much longer period of time to form and is created when organic matter is heated and compressed deep underground. Methanogenic organisms produce methane from a variety of sources, principally carbon dioxide.

During petroleum production, natural gas is sometimes flared rather than being collected and used. Before natural gas can be burned as a fuel or used in manufacturing processes, it almost always has to be processed to remove impurities such as water. The byproducts of this processing include ethane, propane, butanes, pentanes, and higher molecular weight hydrocarbons. Hydrogen sulfide (which may be converted into pure sulfur), carbon dioxide, water vapor, and sometimes helium and nitrogen must also be removed.

Natural gas is sometimes informally referred to simply as "gas", especially when it is being compared to other energy sources, such as oil, coal or renewables. However, it is not to be confused with gasoline, which is also shortened in colloquial usage to "gas", especially in North America.

Natural gas is measured in standard cubic meters or standard cubic feet. The density compared to air ranges from 0.58 (16.8 g/mole, 0.71 kg per standard cubic meter) to as high as 0.79 (22.9 g/mole, 0.97 kg per scm), but generally less than 0.64 (18.5 g/mole, 0.78 kg per scm).[18] For comparison, pure methane (16.0425 g/mole) has a density 0.5539 times that of air (0.678 kg per standard cubic meter).

Asphalt is an immensely viscous constituent of petroleum. Depending on its exact composition it can be a sticky, black liquid or an apparently solid mass that behaves as a liquid over very large time scales. In American English, the material is commonly referred to as asphalt. Whether found in natural deposits or refined from petroleum, the substance is classed as a pitch. Prior to the 20th century, the term asphaltum was in general use. The word derives from the Ancient Greek word σφαλτος (ásphaltos), which referred to natural bitumen or pitch. The largest natural deposit of bitumen in the world is the Pitch Lake of southwest Trinidad, which is estimated to contain 10 million tons.

About 70% of annual bitumen production is destined for road construction, its primary use. In this application, bitumen is used to bind aggregate particles like gravel and forms a substance referred to as asphalt concrete, which is colloquially termed asphalt. Its other main uses lie in bituminous waterproofing products, such as roofing felt and roof sealant.

In material sciences and engineering, the terms asphalt and bitumen are often used interchangeably and refer both to natural and manufactured forms of the substance, although there is regional variation as to which term is most common. Worldwide, geologists tend to favor the term bitumen for the naturally occurring material. For the manufactured material, which is a refined residue from the distillation process of selected crude oils, bitumen is the prevalent term in much of the world; however, in American English, asphalt is more commonly used. To help avoid confusion, the terms "liquid asphalt", "asphalt binder", or "asphalt cement" are used in the U.S. to distinguish it from asphalt concrete. Colloquially, various forms of bitumen are sometimes referred to as "tar", as in the name of the La Brea Tar Pits.

Naturally occurring bitumen is sometimes specified by the term crude bitumen. Its viscosity is similar to that of cold molasses while the material obtained from the fractional distillation of crude oil boiling at 525 °C (977 °F) is sometimes referred to as "refined bitumen". The Canadian province of Alberta has most of the world's reserves of natural bitumen in the Athabasca oil sands, which cover 142,000 square kilometers (55,000 sq mi), an area larger than England.

 

Along with all our fossil fuels are the substances that make our infrastructure work.

Iron is always the main element in steel, but many other elements may be present or added. Stainless steels, which are resistant to corrosion and oxidation, typically need an additional 11% chromium.

Iron is the base metal of steel. Depending on the temperature, it can take two crystalline forms (allotropic forms): body-centered cubic and face-centered cubic. The interaction of the allotropes of iron with the alloying elements, primarily carbon, gives steel and cast iron their range of unique properties. In pure iron, the crystal structure has relatively little resistance to the iron atoms slipping past one another, and so pure iron is quite ductile, or soft and easily formed. In steel, small amounts of carbon, other elements, and inclusions within the iron act as hardening agents that prevent the movement of dislocations.

The carbon in typical steel alloys may contribute up to 2.14% of its weight. Varying the amount of carbon and many other alloying elements, as well as controlling their chemical and physical makeup in the final steel (either as solute elements, or as precipitated phases), impedes the movement of the dislocations that make pure iron ductile, and thus controls and enhances its qualities. These qualities include the hardness, quenching behavior, need for annealing, tempering behavior, yield strength, and tensile strength of the resulting steel. The increase in steel's strength compared to pure iron is possible only by reducing iron's ductility.

     Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Because of its high tensile strength and low cost, steel is one of the most commonly manufactured materials in the world. Steel is used in buildings, as concrete reinforcing rods, in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.

Steel was produced in bloomery furnaces for thousands of years, but its large-scale, industrial use began only after more efficient production methods were devised in the 17th century, with the introduction of the blast furnace and production of crucible steel. This was followed by the Bessemer process in England in the mid-19th century, and then by the open-hearth furnace. With the invention of the Bessemer process, a new era of mass-produced steel began. Mild steel replaced wrought iron. The German states were the major steel producers in Europe in the 19th century. American steel production was centered in Pittsburgh, Bethlehem, Pennsylvania, and Cleveland until the late 20th century.

Further refinements in the process, such as basic oxygen steelmaking (BOS), largely replaced earlier methods by further lowering the cost of production and increasing the quality of the final product. Today more than 1.6 billion tons of steel is produced annually. Modern steel is generally identified by various grades defined by assorted standards organizations. The modern steel industry is one of the largest manufacturing industries in the world, but also one of the most energy and greenhouse gas emission intense industries, contributing 8% of global emissions. However, steel is also very reusable: it is one of the world's most-recycled materials, with a recycling rate of over 60% globally.

Cements used in construction are usually inorganic, often lime- or calcium silicate-based, which can be characterized as hydraulic or the less common non-hydraulic, depending on the ability of the cement to set in the presence of water (see hydraulic and non-hydraulic lime plaster).

A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.

Hydraulic cements (e.g., Portland cement) set and become adhesive through a chemical reaction between the dry ingredients and water. The chemical reaction results in mineral hydrates that are not very water-soluble. This allows setting in wet conditions or under water and further protects the hardened material from chemical attack. The chemical process for hydraulic cement was found by ancient Romans who used volcanic ash (pozzolana) with added lime (calcium oxide).

Non-hydraulic cement (less common) does not set in wet conditions or under water. Rather, it sets as it dries and reacts with carbon dioxide in the air. It is resistant to attack by chemicals after setting.

The word "cement" can be traced back to the Ancient Roman term opus caementicium, used to describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder. The volcanic ash and pulverized brick supplements that were added to the burnt lime, to obtain a hydraulic binder, were later referred to as cementum, cimentum, cäment, and cement. In modern times, organic polymers are sometimes used as cements in concrete.

World production of cement is about 4.4 billion tonnes per year (2021, estimation), of which about half is made in China, followed by India and Vietnam.

The cement production process is responsible for nearly 8% (2018) of global CO2 emissions, which includes heating raw materials in a cement kiln by fuel combustion and resulting release of CO2 stored in the calcium carbonate (calcination process). Its hydrated products, such as concrete, gradually reabsorb substantial amounts of atmospheric CO2 (carbonation process) compensating near 30% of initial CO2 emissions, as estimations suggest.

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminum combined.

When aggregate is mixed with dry Portland cement and water, the mixture forms a fluid slurry that is easily poured and molded into shape. The cement reacts with the water through a process called concrete hydration that hardens it over several hours to form a hard matrix that binds the materials together into a durable stone-like material that has many uses. This time allows concrete to not only be cast in forms, but also to have a variety of tooled processes performed. The hydration process is exothermic, which means ambient temperature plays a significant role in how long it takes concrete to set. Often, additives (such as pozzolans or superplasticizers) are included in the mixture to improve the physical properties of the wet mix, delay or accelerate the curing time, or otherwise change the finished material. Most concrete is poured with reinforcing materials (such as steel rebar) embedded to provide tensile strength, yielding reinforced concrete.

In the past, lime-based cement binders, such as lime putty, were often used but sometimes with other hydraulic cements, (water resistant) such as a calcium aluminate cement or with Portland cement to form Portland cement concrete (named for its visual resemblance to Portland stone). Many other non-cementitious types of concrete exist with other methods of binding aggregate together, including asphalt concrete with a bitumen binder, which is frequently used for road surfaces, and polymer concretes that use polymers as a binder. Concrete is distinct from mortar. Whereas concrete is itself a building material, mortar is a bonding agent that typically holds bricks, tiles and other masonry units together. Grout is another material associated with concrete and cement. It does not contain coarse aggregates and is usually either pourable or thixotropic, and is used to fill gaps between masonry components or coarse aggregate which has already been put in place. Some methods of concrete manufacture and repair involve pumping grout into the gaps to make up a solid mass

    

I try to keep an eye on the meter and turn off the lights when I leave a room. I put on a sweater rather than raise the heat, but I use my share of available energy and pay whatever fees the provider charges. I recycle but that is more for my own self-consciousness rather than any change in the environment.

I rationally know that our species are too greedy for more and will rape the resources of our planet until we destroy ourselves, but the drain for more power to run our data centers and video streaming and whatever is created for our immediate gratification will continue. I may not spend it, but somewhere out there are people making plastic containers for water bottles and paving roads with black goo and borrowing money or credit for bigger and better mobile machines and taller buildings and more ammunition for continuous wars not realizing we can’t stop. Tanks and jet planes don’t run on solar.

Someday when the oil wells run dry and the gas shuts off, we might need to be the next fossil fuel?